Датчик влажности почвы: методы измерения и фиксации данных



Содержание

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.

Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных

Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.



Датчик влажности почвы: методы измерения и фиксации данных

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Датчик влажности почвы: методы измерения и фиксации данных

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Датчик влажности почвы: методы измерения и фиксации данных



Простая схема автоматизации полива

Простейшая система автоматизации полива состоит из датчика влажности и управляющего устройства. Можно изготовить датчик влажности почвы своими руками. Понадобится два гвоздя, резистор с сопротивлением 10 кОм и источник питания с выходным напряжением 5 В. Подойдет от мобильного телефона.

Датчик из гвоздей

В качестве прибора, который выдаст команду к поливу можно использовать микросхему LM393. Можно приобрести готовый узел или собрать его самостоятельно, тогда понадобятся:

  • резисторы 10 кОм – 2 шт;
  • резисторы 1 кОм – 2 шт;
  • резисторы 2 кОм – 3 шт;
  • переменный резистор 51–100 кОм – 1 шт;
  • светодиоды – 2 шт;
  • диод любой, не мощный – 1 шт;
  • транзистор, любой средней мощности PNP (например, КТ3107Г) – 1 шт;
  • конденсаторы 0.1 мк – 2 шт;
  • микросхема LM393 – 1 шт;
  • реле с порогом срабатывания 4 В;
  • монтажная плата.

Схема для сборки представлена ниже.



Схема простого вырианта

После сборки подключите модуль к блоку питания и датчику уровня влажности почвы. На выход компаратора LM393 подсоедините тестер. С помощью построечного резистора установите порог срабатывания. Со временем нужно будет его откорректировать, возможно, не один раз.

Принципиальная схема и распиновка компаратора LM393 представлена ниже.

lm393 выводы



Простейшая автоматизация готова. Достаточно подключить к замыкающим клеммам исполнительное устройство, например, электромагнитный клапан, включающий и отключающий подачу воды.

После того как закончите датчик, рекомендуем узнать как сделать автополив в теплице своими руками.

Надежный емкостной датчик влажности почвы своими руками (STM32)

Рассмотрена теория построения емкостного датчика для системы автополива, расчеты, проверка на практике, примеры применения.

Если взять два куска фольгированного стеклотекстолита и расположить их параллельно медными плоскостями внутрь на небольшом расстоянии, то получим  плоский конденсатор. Рассмотрим как будет влиять изменение его емкости и как это можно использовать.



Купить на Aliexpress

Расчеты

Емкость вычисляется по следующему выражению:

Пусть пластины имеют размеры  w = 12 мм; l = 35 мм, тогда площадь S = 12*35=420 мм², а расстояние между ними d = 3 мм, тогда расчетная электрическая емкость C = 1 пФ.

Геометрические размеры (площадь) S, как и расстояние между пластинами d не меняется. Остается для изменения емкости менять вещество между пластинами, пока это воздух ε = 1. Как думаете какая относительная диэлектрическая проницаемость воды? Источники показывают, что ε = 81.

Полное погружение в воду даст увеличение емкости в 81 раз! Расчетная ёмкость C составит уже не 1 пФ, а 100 пФ.

Таким образом плавно погружая этот самодельный кондер также плавно и пропорционально будет изменятся и емкость, что дает возможность эффективно отслеживать состояние влажности.

Превращение изменения емкости в изменение напряжения

Подключив последовательно с резистором конденсатор получим ФНЧ (фильтр нижних частот).

Получается делитель напряжения, где у верхнего плеча R1 сопротивление не изменяется, а емкостное сопротивление нижнего плеча C1 меняется в зависимости от частоты.

Но так как частота сигнала будет неизменной, то построим график зависимости емкостного сопротивления от емкости (C = 1-100 пФ):

Таким образом понятно, что при увеличении емкости ( погружение в воду) сопротивление нижнего плеча будет уменьшаться, как и падение напряжения на нем, а значит и выходное напряжение (см. подтверждение опытом ниже).

Но остается еще одно — выделить только амплитуду, именно для этого применяется АМ-детектор. Его расчет был выполнен, но ничего полезного этого не дало, поэтому номиналы взяты такие же, как у готового. Главная суть в этом:

нужно подобрать емкость и сопротивление таким образом, чтобы конденсатор успевал подзаряжаться при увеличении сигнала, а при уменьшении подразряжался за время низкого уровня, но при изменении сигнала огибающая изменялась.

Схема электрическая принципиальная

Моделирование работы работы схемы

Собираем (номиналы изменены из-за сложности моделирования на высоких частотах!).

Запускаем:

Датчик влажности почвы: варианты изготовления своими руками

Здесь видно как хорошо выделяется амплитуда при изменении емкости C2.

Датчик влажности почвы: варианты изготовления своими руками

Проверка на практике

  • Сначала непосредственно датчик, состоящий из двух кусочков фольгированного стеклотекстолита FR-4 (70×12 мм).
  • *также не забываем изолировать открытые участки меди клейкой лентой
  • И также схемка в миниатюрном исполнении.
  • Сигнал сгенерирован с помощью МК (ШИМ, f = 1 МГц, D = 50%), конечно это можно сделать с помощью того же таймера NE555, но если устройство уже будет иметь микроконтроллер, то зачем же еще одна МС?

Теперь просто подключаем питание (здесь 3.

3 В), вольтметр на выход и смотрим как изменяется напряжение при заливании водой.

  1. Очень хорошо, показания изменяются очень плавно и четко.
  2. Остается только оцифровать показания с помощью встроенного в МК АЦП и придать им какие-то смысловые привязки, например проценты.

Проверка на почве

Также не лишним будет воткнуть данный датчик в настоящий грунт.

Показания менялись медленно и уверенно, на следующий день на выходе имеем плюс 214 мВ, т.к. слой почвы мал.

Более практичный датчик из пластин оцинковки

Покрыты слоем клейкой ленты.

При сухом грунте на выходе примерно 1.5 В.

После сверхобильного полива 0.75 В.

Подключение к микроконтроллеру

Остается вместо вольтметра подключить один из входов АЦП МК и настроить генерацию ШИМ-сигнала одним из таймеров. Чтобы не повторять одно и то же см. видос или код на гитхабе.

Выполняем калибровку

Отсутствие воды:  U = 0.75 В = ADC = 930 = 0 %. Заполнение полностью (до определяемой границы): U = 1.4 В = ADC = 1737 = 100 %.

Автоматическая система полива (простейшее исполнение)

  • Прикупил маленький водяной насос, работает неплохо и хорошо подойдет для проверки.
  • Управление насосом через ключ (полевой транзистор IRLML2502) ШИМ-сигналом 1 кГц.

После выполненой калибровки программа выключит насос, когда напряжение станет ниже нижнего порога  (0.75В) и включит, когда пересечет верхний порог (1.4 В).

Направления применения

Влажность почвы

  1. Самым очевидным применением будет определение влажности грунта в цветочном горшке или просто на участке.
  2. Таким образом можно встроить этот датчик в систему автоматического полива растений.

Наличие дождя

  • Для определения дождя также можно использовать сенсор такого типа, просто между пластинами расположить губку, а сбор капель сделать с помощью воронки.
  • Таким образом во время дождя поролон впитывает воду, емкость возрастает, а после прекращения дождя остатки уйдут вниз, и еще через время она снова станет сухой.

Уровень воды в емкости

Имея небольшой (или большой) запас воды в цистерне удобно проверять её уровень на расстоянии, ведь обычно емкость находится где-то в труднодоступном месте на высоте.

Если емкость металлическая, то она может выступать одним электродом. Если пластиковая, то его придется сделать, но это не так сложно.

Прикасание к телу

  1. В одном из устройств принцип изложенный выше был использован для обнаружения касания к телу человека, пример ниже.
  2. *это электронный термометр; смотреть в правый верхний угол

То же самое от китайцев

Вообщем то эта схема является частью китайского сенсора. Единственное отличие в том, что генератором выступает не таймер NE555, а микроконтроллер, ведь в любом случае он будет в устройстве.

Измерение влажности почвы с помощью аналогового выхода

Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.

Подключение

Давайте подключим наш датчик влажности почвы к плате Arduino.

Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.

Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.

Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.

Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.

Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.

Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.

И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.

Схема соединений показана на рисунке ниже.

Рисунок 6 Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе
Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе

Калибровка

Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.

Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.

Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.

Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.

Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:

  • ~ 850, когда почва сухая;
  • ~ 400, когда почва полностью насыщена влагой.

Рисунок 7 Калибровка датчика влажности почвы
Рисунок 7 – Калибровка датчика влажности почвы

Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.

Финальная сборка

Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:

  • <500 – слишком влажная;
  • 500-750 – это целевой диапазон;
  • >750 – достаточно сухая для полива.

Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.

Рисунок 8 Вывод аналоговых показаний датчика влажности почвы
Рисунок 8 – Вывод аналоговых показаний датчика влажности почвы

Проветривание

проветривание теплицы термоприводом
Поддерживать оптимальную температуру можно несколькими способами. Для теплиц, оптимальная температура +22 градуса, максимальная +30 градусов и минимальная +16 градусов. Для начала мы будем использоваться масляный термопривод, цену не знаю, т.к. специализированный стоит от 1500 рублей, но можно сделать самому из старого амортизатора автомобильного и дополнительной емкости для лучшего расширения. Вообщем идея такая, при повышении температуры в теплице, масло в цилиндре термопривода расширяется и толкает поршень, который связан с форточкой, тем самым открывает. И наоборот, как температура падает, термопривод закрывает форточку. Если все правильно рассчитать, то электронные устройства для поддержания температуры не нужны, но мы будем делать полностью автоматизированную теплицу, на случай сильной жары. И добавим еще вентиляторы, которые будут включаться, если не будет хватать масляных термоприводов.

Доступ к теплице через интернет

сетевой шилд для ардуионо
Если не хотите ограничивать себя только офлайн версией автоматической теплицы, можно купить за 10 баксов на том же алиекспресс специальный сетевой шилд, чтобы можно было управлять теплицей через интернет. Так же мы можем использовать сеть для подключения видеокамер. Можно следить за нашими растениями через интернет.

Как выбрать типоразмер детектора влаги

Прежде всего, устанавливают, какие из нижеследующих характеристик требуется получить:

  • Объемное содержание воды в грунте.
  • Водный потенциал почвы.
  • Кривые выделения влаги.

Для выбора датчика важно верно принять тип почвы и её текстуру. Кроме того, точность показаний устройства ограничивается определённой площадью участка. Например, применительно к датчику влажности почвы для комнатных растений этот показатель несущественен, в то же время фермеру или агроному он весьма важен.  Первичные сведения о типе грунта включают степень его засолённости (не более 10 дСм/м) и текстуру — форму и размеры составляющих его частиц, наличие слоёв, трещин и т.п. Точность работы возрастает, если прибор характеризуется минимальной чувствительностью к солям.

Тестирование детектора производят в следующей последовательности:

  1. Включают влагомер.
  2. Настраивают его на тот тип грунта, который предполагается исследовать на влажность.
  3. Щупы вставляют в грунт на рекомендуемую глубину перпендикулярно поверхности до упора нижней плоскости корпуса в почву.
  4. Снимают показания дисплея и сравнивают значения с эталонными для данных условий измерения.
  5. Повторяют замер для участков почвы, которые располагаются на расстоянии 1,0…1,5 м. Разброс данных не должен превышать 0,5 %. Для неоднородных грунтов расстояния между точками замеров следует уменьшать.

Если грунт – сухой, то для улучшения ввода щупов почву допускается использовать деревянный молоточек, но при этом удары не должны восприниматься корпусом прибора.

Управление электронагрузками

 4 Channel Relay Shield плата с реле для ардуионо

Для управления электрооборудованием подойдёт плата Relay Shield, количество реле должно соответствовать количеству устройств + запас на будущее, всегда можно добавить. На картинке 4 канальная плата. Мы будем включатьвыключать насос, электромагнитные краны. Если использовать сервопривода или электро привод замка дверей для авто, можно открыватьзакрывать форточки.

Исполнительные устройства автоматизации полива

Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.

Хорошо зарекомендовали себя клапаны производства американской компании Hunter. Для разных целей используются клапаны c проходным диаметром 1, 1.5, и 2 дюйма с наружной или внутренней резьбой.

Клапан Hunter

Существует множество управляемых кранов и других производителей.

Управляемый кран

Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.

Принцип функционирования прибора

Исходный сигнал передаётся через токопроводящие щупы и усиливается. Потенциометр преобразует значение напряжения в диэлектрическую проницаемость, и усредняет полученные значения по длине щупов. Обычно детекторы имеют зону воздействия длиной 20…40 мм относительно нижней поверхности корпуса. С увеличением длины чувствительность (особенно на крайних участках) возрастает. Для обеспечения необходимой точности измерений датчики подвергают предварительной калибровке.

Датчик влажности почвы позволяет оценивать потери влаги с течением времени из-за её испарения и жизнедеятельности растений. Прибором можно контролировать содержание влаги в почве, управляя орошением в теплицах и других закрытых помещениях (см. рис. 4).

Характеристики:

  • Рабочее напряжение: 2…5 В;
  • Рабочий ток: 20…40 мА;
  • Тип интерфейса: аналоговый или цифровой;
  • Рабочая температура использования: 10°C … 30°C.

Для работы цифрового детектора его перед применением потребуется оснастить необходимым программным обеспечением.

удаленное управление влажностью
Рисунок 4. Оценка влажности почвы для домашних растений

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Датчик влажности почвы: методы измерения и фиксации данных

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Датчик влажности почвы: методы измерения и фиксации данных

Системы автоматизации полива

Если вас интересует полноценная система автополива, то необходимо задуматься о приобретении программируемого контроллера. Если участок небольшой, то достаточно установить 3–4 датчика влажности для разных типов полива. Например, сад нуждается в меньшем поливе, малина любит влагу, а для бахчи достаточно воды из почвы, за исключением чрезмерно засушливых периодов.

На основании собственных наблюдений и измерений датчиков влажности можно приблизительно рассчитать экономичность и эффективность подачи воды на участках. Процессоры позволяют вносить сезонные корректировки, могут использовать показания измерителей влажности, учитывают выпадение осадков, время года.

Контрольные системы полива

Некоторые датчики влажности почвы оснащены интерфейсом RJ-45 для подключения к сети. Прошивка процессора позволяет настроить систему так, что она будет оповещать о необходимости полива через социальные сети или SMS-сообщением. Это удобно в тех случаях, когда невозможно подключить автоматизированную систему полива, например, для комнатных растений.

Контроллер для комнатного растения

Для системы автоматизации полива удобно использовать контроллеры с аналоговыми и контактными входами, которые соединяют все датчики и передают их показания по единой шине к компьютеру, планшету или мобильному телефону. Управление исполнительными приборами происходит через WEB-интерфейс. Наиболее распространены универсальные контроллеры:

  • MegaD-328;
  • Arduino;
  • Hunter;
  • Toro.

Контроллеры автополива Toro

Это гибкие устройства, позволяющие точно настроить автоматический полив в теплице, и можно доверить им полный контроль над садом и огородом.

Порядок применения

В большинстве современных конструкций датчиков предусматриваются и аналоговый, и цифровой выводы, которые следует подключить к щупам. Если выход – аналоговый, то на приборной панели будет указано значение влажности в процентах или относительных единицах. Если вывод – цифровой, то фактическое значение будет соотнесено с заданным. Если оно больше фактического, то на индикаторе высвечивается «1», а, если меньше – то «0».

Для цифровой техники важно установить необходимое программное обеспечение. Программа генерирует значение влажности в качестве выходного сигнала. Для калибровки используют различные типы почвы (минимум две — влажную и сухую), устанавливают требуемые границы влажности, после чего вставляют датчик в почву (см. рис. 5). Для приборов комбинированного типа рекомендуется проводить измерения сначала в аналоговом режиме, а затем в цифровом.

В зависимости от способа измерения щупы подключаются следующим образом:

  • К источнику питания;
  • К аналоговому выходу;
  • К цифровому выходу;
  • К заземлению.

Управляющий модуль, в который входит потенциометр,  устанавливает пороговое значение, оно потом будет сравниваться компаратором. При достижении порогового значения влажности загорается выходной светодиод. Пользователь может устанавливать различные диапазоны значений влажности.

датчик влажности
Рисунок 5. Размещение щупов в грунте

РадиоКот :: Датчик влажности почвы

Датчик влажности почвы

Целью данной разработки являлось создание датчика влажности почвы для использования в автоматических поливных системах. Основными условиями при разработке являлись следующие критерии:

  • Дешевизна
  • Надежность
  • Легкость повторения
  • Простая настройка
  • Наглядная индикация.

Датчик влажности почвы: варианты изготовления своими руками

Датчик питается от 5..12В и имеет один дискретный выход.  Выход содержит высокий потенциал («1») если влажность почвы упала ниже заданной и низкий потенциал («0»), если влажность почвы выше заданной. Датчик обладает некоторой инерцией и свойством гистерезиса для исключения случайных переключений в момент, когда влажность почвы очень близка к заданной.

Для индикации состояния датчик использует сдвоенный красно-зеленый светодиод изменяющий цвет свечения. Зеленый — влажность выше заданной. Красный — влажность ниже заданной. В процессе просыхания почвы цвет светодиода будет плавно изменятся с зеленого на желтый и при достижении заданного порога произойдет переключение на красный.

В качестве сенсора используются два электрода углубленные в почву на глубину замера. Можно использовать велосипедные спицы изолированные на глубину замера термообсадной трубкой.

Принцип работы схемы следующий. На элементе U1A собран генератор прямоугольных импульсов с частотой ~1Кгц. Через подстроечный резистор R2 импульсы поступают на вход U1B, причем амплитуда импульсов будет зависеть от влажности почвы, которая будет шунтировать передаваемый сигнал через конденсатор C2.

Кроме того, поступающие импульсы будут иметь уже не прямоугольную, а скорее пилообразную форму из-за сглаживания конденсатором C2. В результате на выходе U1C получатся прямоугольные импульсы со скважностью, зависящей от влажности почвы.

Эти импульсы преобразуются в постоянное напряжение (D1, C3) которое поступает на вход U1D. При этом конденсатор C3 определяет инерционность схемы и обеспечивает защиту от помех, а благодаря гистерезисным свойствам входов U1, обеспечивается небольшой диапазон между переключениями выходного сигнала.

Транзистор Q3 является инвертирующим и согласующим звеном с исполнительной схемой.

Правильно собранный датчик в настройках не нуждается. В случае использования другой микросхемы, вероятна необходимость изменения номиналов R1 C1 для получения частоты генерации ~1Кгц.

Регулировка уровня порогового значения влажности производится при подключенных контактах сенсора, погруженных в политую почву с необходимой влажностью. Подстроечный резистор R2 следует установить в положение, когда горит зеленая часть светодиода, а красная часть  начинает слегка светиться.

Датчик влажности почвы: варианты изготовления своими руками

Датчик влажности почвы: варианты изготовления своими руками

Датчик влажности почвы: варианты изготовления своими руками

*** Печатная плата изображена как «вид сверху»  (вид сквозь текстолит). Если используется ЛУТ, то просто распечатать и катать, зеркалить не надо. Отверстия под диод, потенциометр и светодиод d0.8 мм, остальные d0.5мм.

*** При монтаже возникнут неудобства с размещением электролитического конденсатора C3, изначально, использовался керамический конденсатор, который не обеспечивал необходимой инерционности.  Конденсатор C3 следует впаивать в последнюю очередь.

Из своего опыта эксплуатации могу сказать следующее. Датчик следует питать стабильным напряжением. Я использовал один стабилизатор 7805 на 4 датчика. Датчик достаточно чувствительный, т.е. диапазон изменения влажности от заданной, при котором производится переключение датчика, составляет ~10% (а может еще меньше).

По этой причине датчик будет «хотеть» поливать часто, но по чуть-чуть. Я подключил датчики к контроллеру и делаю паузу после каждого полива на 20 мин, чтобы дать влаге впитаться и заодно остудить насос.

Недостатком датчика является ощутимый разброс диапазона  гистерезиса у разных датчиков, что обусловлено различными характеристиками элементов.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Датчик влажности почвы: методы измерения и фиксации данных

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Датчик влажности почвы: методы измерения и фиксации данных

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Датчик влажности почвы: методы измерения и фиксации данных

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Датчик влажности почвы: методы измерения и фиксации данных

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Датчик влажности почвы: методы измерения и фиксации данных

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.

Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных
Датчик влажности почвы: методы измерения и фиксации данных

Обзор аппаратного обеспечения

Типовой датчик влажности почвы состоит из двух компонентов.

Зонд

Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.

Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.

Рисунок 2 Зонд датчика влажности почвы
Рисунок 2 – Зонд датчика влажности почвы

Модуль

Датчик также содержит электронный модуль, который соединяет датчик с Arduino.

В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).

Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).

Рисунок 3 Регулировка чувствительности датчика влажности почвы
Рисунок 3 – Регулировка чувствительности датчика влажности почвы

Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.

С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.

Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!

Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.

Рисунок 4 Светодиодные индикаторы питания и состояния почвы
Рисунок 4 – Светодиодные индикаторы питания и состояния почвы

Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.

Материалы, необходимые для создания датчика своими руками

Если вы решили заняться изготовлением влагомера собственноручно, то вам нужно подготовить:

  • электроды диаметром 3-4 мм – 2 шт.;
  • текстолитовое основание;
  • гайки и шайбы.

Датчик влажности почвы: методы измерения и фиксации данных

Проверка на практике

Сначала непосредственно датчик, состоящий из двух кусочков фольгированного стеклотекстолита FR-4 (70×12 мм).

Датчик влажности почвы: методы измерения и фиксации данных

*также не забываем изолировать открытые участки меди клейкой лентой

И также схемка в миниатюрном исполнении.

Датчик влажности почвы: методы измерения и фиксации данных

Сигнал сгенерирован с помощью МК (ШИМ, f = 1 МГц, D = 50%), конечно это можно сделать с помощью того же таймера NE555, но если устройство уже будет иметь микроконтроллер, то зачем же еще одна МС?

Датчик влажности почвы: методы измерения и фиксации данных

Теперь просто подключаем питание (здесь 3.3 В), вольтметр на выход и смотрим как изменяется напряжение при заливании водой.

Очень хорошо, показания изменяются очень плавно и четко.

Остается только оцифровать показания с помощью встроенного в МК АЦП и придать им какие-то смысловые привязки, например проценты.

Теплица на ардуино

теплица с автоматикой

Датчик влажности почвы применяемые в теплице.

Датчик влажности почвы представляет собой систему из двух сварочных электродов диаметром 3…4 мм из нержавеющей стали, укрепленных на основании из изолированного материала — гетинакса или текстолита толщиной 4…6 мм.

С электродов сбивается обмазка и голый провод зачищается мелкозернистой наждачной бумагой. С одного конца на электродах нарезается резьба на длину 8… 10 мм. Другие концы с помощью заточного устройства стачиваются на конус для легкого входа в почву.

На гетинаксовой (текстолитовой) пластине с размерами 20×50 мм сверлятся отверстия и нарезается резьба, в отверстия вворачиваются электроды и контрятся гайками с шайбами.

Под шайбы подкладываются отводящие провода в экране. Электроды туго обматываются виниловой изоляционной лентой, начиная от гетинаксовой планки и не доходя 10… 15 см от заостренных концов, в два захода — вверх и вниз.

Вместо гетинаксовой планки можно использовать сетевые вилки от бытовых приборов ранних выпусков. Собственно вилки выворачиваются из запрессованных в пластмассу маток и на их место вворачиваются электроды.

Датчик влажности почвы можно изготовить и из двух полосок нержавеющей стали толщиной 2 мм, шириной 10…12 мм и длиной 22…25 см.

Крепление полосок — с помощью винтов *МЗ с шайбами в брусочке из изоляционного материала. В торцовых сторонах брусочка сверлятся отверстия диаметром 2,5 мм на глубину 10 мм по два отверстия с каждой стороны.

Электроды крепятся винтами с наружных сторон брусочка. Размеры брусочка. — 20x30x50 мм. Отводящие провода крепятся под шайбы винтов. Полоски также необходимо обернуть виниловой лентой.

Датчики влажности воздуха для теплицы.

Датчики влажности воздуха строятся по несколько иной схеме.

На проводящее основание с большим сопротивлением наносится вещество, обладающее высокой гигроскопичностью, т. е. свойством активно поглощать влагу, — поваренная соль, гипс, хлористый литий.

При повышении влажности воздуха сопротивление влагопоглотителя снижается и суммарное сопротивление подложки и покрытия уменьшается.

Если последовательно с таким датчиком включить резистор и пропустить слабый ток, то на датчике (или на резисторе) будет изменяться падение напряжения за счет изменения тока в цепи.

Датчик влажности воздуха может быть построен и по другой схеме — на изолятор (шелковый шнур, гетинакс) наносится слой влагопоглотителя (в основном, поваренная соль или хлористый литий), и также пропускается слабый ток последовательно с резистором.

В данном случае при изменении содержания влаги в воздухе изменяется абсолютное сопротивление влагопоглотителя.

Однако всем описанным и другим датчикам влажности воздуха присущ весьма серьезный недостаток — высокая инерционность из-за большого количества влагопоглотителя, достигающая десятков минут и даже часов.

Это значит, что при снижении уровня влажности ниже нормы включается система, но распыление воды для увлажнения воздуха до нормы приведет к сильному переувлажнению.

Такое состояние будет сохраняться в течение часов, что приведет к болезням или даже гибели таких растений, как помидоры, баклажаны, перец, которые для своего нормального роста и плодоношения требуют низкой влажности воздуха (30…50%).

Чтобы избежать подобных ситуаций, были разработаны специальные датчики влажности воздуха на основе высокоомных резисторов МЛТ-2,0 с минимальным количеством влагопоглотителя.

С резисторов с помощью растворителя удаляется влагозащитная краска. Остатки краски аккуратно удаляются остро заточенной щепкрй — металл применять нельзя, так как легко можно повредить токопроводящую поверхность.

На очищенную и обезжиренную поверхность между отводящими ламелями наносится влагопоглотитель — насыщенный раствор поваренной соли или гипса.

Солевой раствор на токопроводящую поверхность резистора наносится мягкой кисточкой, гипс — остро заточенной спичкой в виде продольных черточек.

Влагопоглотитель необходимо просушить под лампой. Номинал резистора для датчика с солевым покрытием — 130…150 кОм, для гипсового — 430…470 кОм.

Для меньших значений влажности, например в помидорной теплице, используется датчик с солевым покрытием, для огуречной теплицы — с гипсовым.

Подключение к микроконтроллеру

Остается вместо вольтметра подключить один из входов АЦП МК и настроить генерацию ШИМ-сигнала одним из таймеров. Чтобы не повторять одно и то же см. видос или код на гитхабе.

Выполняем калибровку

Отсутствие воды:  U = 0.75 В = ADC = 930 = 0 %.
Заполнение полностью (до определяемой границы): U = 1.4 В = ADC = 1737 = 100 %.

Моделирование работы работы схемы

Собираем (номиналы изменены из-за сложности моделирования на высоких частотах!).

Запускаем:

Здесь видно как хорошо выделяется амплитуда при изменении емкости C2.

То же самое от китайцев

Вообщем то эта схема является частью китайского сенсора. Единственное отличие в том, что генератором выступает не таймер NE555, а микроконтроллер, ведь в любом случае он будет в устройстве.

Датчик влажности почвы: методы измерения и фиксации данных

Инструкция по изготовлению

Как же сделать датчик влажности почвы своими руками? Вот краткий инструктаж:

  • Шаг 1. Прикрепляем электроды к основанию.
  • Шаг 2. Нарезаем на концах электродов резьбу и заостряем с обратной стороны для более лёгкого погружения в почву.
  • Шаг.3. Делаем в основании отверстия и вкручиваем в них электроды. В качестве крепёжных элементов используем гайки и шайбы.
  • Шаг 4. Подбираем нужные провода, которые подойдут к шайбам.
  • Шаг 5. Изолируем электроды. Углубляем их в грунт на 5 – 10 см.

Датчик влажности почвы: методы измерения и фиксации данных

Для работы датчика требуются: сила тока в 35 мА и напряжение в 5 В. В конце подключаем прибор, используя три провода, которые присоединяем к микропроцессору.

Датчик влажности почвы: методы измерения и фиксации данных

Контроллер позволяет скомбинировать датчик с зуммером. После этого подаётся сигнал, если количество влаги в почве резко уменьшается. Альтернативой звукового сигнала может служить загорание лампочки.

Датчик влажности почвы: методы измерения и фиксации данных

Датчик влажности почвы, без сомнения, вещь в хозяйстве нужная. Если у вас есть дача или огород, то непременно озаботьтесь его приобретением. Причём прибор вовсе не обязательно покупать, поскольку можно легко сделать самим.

Датчик влажности почвы: методы измерения и фиксации данных

Владимир Попов

Садоводство - это увлечение всей моей жизни. Люблю возиться с растениями. Испытывать новые сорта и технологии. Рад делиться своими экспериментами с Вами.

Оцените автора
Знай Сад